Advanced Tutorial
This advanced tutorial is not much more complicated than the one for beginners. It only reviews parts of the API that may be less used (not that they are less useful!) and that are more likely to change in future releases.
Introspection
- In order to browse a database people have to be aware of:
the REST hierarchy
schema types and fields
values of fields and resources within a project
The idea of this interface is to help users find their way around a XNAT server by making it easier to gather the preceding information.
Searchable datatypes and fields
>>> # simple datatypes listing
>>> central.inspect.datatypes()
[..., 'xnat:subjectData', 'xnat:projectData', 'xnat:mrSessionData', ...]
>>> # datatypes listing with filter
>>> central.inspect.datatypes('cnda:*')
['cnda:manualVolumetryData',
'cnda:clinicalAssessmentData',
'cnda:psychometricsData',
'cnda:dtiData',
'cnda:atlasScalingFactorData',
'cnda:segmentationFastData',
'cnda:modifiedScheltensData']
>>> # simple fields listing
>>> central.inspect.datatypes('xnat:subjectData')
['xnat:subjectData/SUBJECT_ID',
'xnat:subjectData/INSERT_DATE',
'xnat:subjectData/INSERT_USER',
'xnat:subjectData/GENDER_TEXT',
...]
>>> # field listing with filter
>>> central.inspect.datatypes('xnat:subjectData', '*ID*')
['xnat:subjectData/SUBJECT_ID', 'xnat:subjectData/ADD_IDS']
>>> # field listing on multiple types
>>> central.inspect.datatypes('cnda:*', 'EXPT_ID')
['cnda:manualVolumetryData/EXPT_ID',
'cnda:clinicalAssessmentData/EXPT_ID',
'cnda:psychometricsData/EXPT_ID',
'cnda:dtiData/EXPT_ID',
'cnda:atlasScalingFactorData/EXPT_ID',
'cnda:segmentationFastData/EXPT_ID',
'cnda:modifiedScheltensData/EXPT_ID']
To known what values fields can take in the database:
>>> central.inspect.field_values('xnat:mrSessionData/SESSION_ID')
REST hierarchy
pyxnat
does not support all the REST resources. The reasons for this
is that, some of these resources are still experimental, or do not
work exactly the same way which would make it difficult to provide a
consistent interface at the Python level. However support for these
exotic resources will increase in future releases. A good way to know
what is the supported REST hierarchy is to use the following method:
>>> central.inspect.structure()
- PROJECTS
- SUBJECTS
- EXPERIMENTS
- ASSESSORS
- RESOURCES
FILES
- IN_RESOURCES
FILES
- OUT_RESOURCES
FILES
- RECONSTRUCTIONS
- IN_RESOURCES
FILES
- OUT_RESOURCES
FILES
- SCANS
- RESOURCES
FILES
- RESOURCES
FILES
- RESOURCES
FILES
- RESOURCES
FILES
Naming conventions
Administrators usually use a consistent vocabulary across single projects, that maps to XNAT datatypes. A new feature in introduced in 0.6 and improved in 0.7 is to be able to define a mapping so that specific name patterns can be used to cast a resource when creating a new one.
For example with the following mapping:
'/projects/my_project/subjects/*/experiments/SessionA_*':'xnat:mrSessionData'
Creating an experiment in my_project
that matches Session_*, creates an xnat:mrSessionData:
>>> central.select('/projects/my_project/subjects/*/experiments/SessionA_new').create()
In the 0.7, it is no longer up to the user to manually save and load
the mapping file. Files are created automatically and the mappings are
discovered on the fly when queries are issued on the server. Files
are loaded at the Interface
creation and the mappings are updated
regularly. This functionality can be configured with the following
method:
>>> # activate (default)
>>> central.inspect.set_autolearn('True')
>>> # setup update frequency
>>> central.inspect.set_autolearn(tick=10)
When a mapping is available, re-running the rest_hierarchy
method will display additional information such as:
- PROJECTS
+ SUBJECTS
+ EXPERIMENTS
-----------
- xnat:mrSessionData
- xnat:petSessionData
+ASSESSORS
....
There are additional methods to visualize and display the mappings:
>>> central.inspect.experiment_types()
>>> central.inspect.assessor_types()
>>> central.inspect.scan_types()
>>> central.inspect.reconstruction_types()
Methods also allow to have a quick look on the values at those levels on the database:
>>> central.inspect.experiment_values('xnat:mrSessionData')
>>> central.inspect.assessor_values('xnat:mrSessionData')
>>> central.inspect.scan_values('xnat:mrSessionData')
>>> central.inspect.reconstruction_values('xnat:mrSessionData')
For more details check the reference documentation.
Note
With networkx
and matplotlib
installed, a draw
subinterface will be made available to display some data from the
inspect subinterface as a graph:
>>> central.draw.experiments()
>>> central.draw.assessors()
>>> central.draw.scans()
>>> central.draw.reconstructions()
>>> central.draw.architecture()
>>> central.draw.field_values()
Search templates
pyxnat
is also able to define templates to use with XNAT search engine.
They work basically the same way as usual searches but instead of defining
values to filter the data, one need to define keywords to replace them later
with the actual values:
>>> contraints = [('xnat:subjectData/SUBJECT_ID','LIKE','subject_id'),
('xnat:subjectData/PROJECT', '=', 'project_id'),
'OR',
[('xnat:subjectData/AGE','>','age'),
'AND'
]
]
>>> columns = ['xnat:subjectData/PROJECT', 'xnat:subjectData/SUBJECT_ID']
>>> interface.manage.search.save_template('name',
'xnat:subjectData',
columns,
criteria,
sharing='public',
description='my first template'
)
>>> interface.manage.search.use_template('name',
{'subject_id':'%',
'project_id':'my_project',
'age':'42'
}
)
>>> interface.select(...).where(template=('name',
{'subject_id':'%',
'project_id':'my_project',
'age':'42'}
)
)
And now it is also possible to reuse saved searches in the where clause in the same way as the templates. It means that you reuse the constraints but not the data selection which still changes:
>>> interface.select(...).where(query='saved_name')
Provenance definition
pyxnat
0.8 introduces a way to store provenance i.e. to describe the steps
that were performed on an initial data to produce this one. Reconstructions
and assessors only can be annotated with provenance information:
>>> prov = {'program':'young',
'timestamp':'2011-03-01T12:01:01.897987',
'user':'angus',
'machine':'war',
'platform':'linux',
}
>>> element.provenance.attach(prov)
>>> element.provenance.get()
>>> element.dettach()
The provenance Provenance.attach()
method adds new steps with each call, unless the overwrite
parameter is set to True. The following keywords for the provenance dictionary
are available:
program
program_version
program_arguments
timestamp
cvs
user
machine
platform
platform_version
compiler
compiler_version